
Soliton solutions of driven nonlinear Schrödinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 9151

(http://iopscience.iop.org/0305-4470/39/29/010)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 03/06/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/29
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 9151–9159 doi:10.1088/0305-4470/39/29/010

Soliton solutions of driven nonlinear Schrödinger
equation

Vivek M Vyas1, T Soloman Raju2, C Nagaraja Kumar3 and
Prasanta K Panigrahi4

1 Department of Physics, M S University of Baroda, Vadodara 390 002, India
2 Physics Group, BITS-Pilani, Goa Campus, Zuari Nagar, Goa, 403 726, India
3 Department of Physics, Panjab University, Chandigarh 160 014, India
4 Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

E-mail: prasanta@prl.res.in

Received 9 November 2005, in final form 2 June 2006
Published 5 July 2006
Online at stacks.iop.org/JPhysA/39/9151

Abstract
We analyse the structure of the exact, dark and bright soliton solutions of
the driven nonlinear Schrödinger equation. A wide class of solutions, phase
locked with the source, is identified for distinct parameter ranges. These
contain periodic as well as localized solutions, which can be singular implying
extreme increase in intensity. Conditions for obtaining non-propagating
solutions are also found. A special case, where the scale of the soliton
emerges as a free parameter, is obtained. We also study the highly restrictive
structure of the localized solutions, when the phase and amplitude get coupled.
Numerical solutions are obtained for this case, which reveals presence of
periodic solutions. Stability analysis is also carried out through the Crank–
Nicolson method.

PACS numbers: 42.81.Dp, 47.20.Ky, 42.65.Tg, 05.45.Yv

1. Introduction

The externally driven, nonlinear Schrödinger equation (NLSE) with a source has been
investigated in the context of a variety of physical processes. It arises in the problem of
Josephson junction [1], charge density waves [2], twin-core optical fibres [3–7], plasma
driven by rf fields [8] and a number of other problems [9]. As compared to NLSE, which
is an integrable system [10], not much is known about the exact solutions of this equation.
Perturbative solutions around the stable soliton solutions of NLSE with a source have been
studied earlier. Analysis around constant background and numerical investigations [11–14]
have revealed the phenomenon of auto-resonance [15, 16] as a key characteristic of this
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system, where a continuous phase locking between the solutions of NLSE and the driven field
is observed.

In a recent work [17], some of the present authors have devised a procedure based on
fractional linear transformation for obtaining exact solutions of this dynamical system. One
obtains both localized and oscillatory solutions. Apart from these regular solutions, under
certain constraints singular solutions have also been found, implying extreme increase in the
field intensity due to self-focussing. This approach is non-perturbative in the sense that the
obtained exact solutions are necessarily of rational type, with both numerator and denominator
containing terms quadratic in elliptic functions. However, the exact parameter ranges in which
the general solution exhibits bright and dark nature have not been investigated. Considering
the importance of the localized solutions of this physically important dynamical system, the
above point needs a systematic study. Study of the stability of these as well as the periodic
solutions also need careful analysis.

The goal of the present paper is to analyse in detail the structure of the most general,
bright and dark solitons of the NLSE with a source. The parametric restrictions, under which
singular structures can form, are obtained. Unlike NLSE, it is observed that dark and bright
solitons depend both on coupling and source strengths. For example, bright solitons can
also form in the repulsive regime, if the source strength has positive value. Similarly dark
solitons can form in the attractive regime. Conditions which give non-propagating solutions,
for driven NLSE, are studied. The possibility where the phase and amplitude can get related
is also investigated. The highly restrictive nature of the resulting dynamics is pointed out.
The stability of the solutions has been studied numerically through the Crank–Nicolson finite
difference method.

2. Analysis of NLSE phase locked with source

The equation which we intend to solve is NLSE driven with a plane wave, and phase locked
with it:

i
∂ψ

∂t
+

∂2ψ

∂x2
+ g|ψ |2ψ + µψ = κ ei(kx−ωt), (1)

where g,µ, κ, ω and k are real constants. We consider the ansatz travelling wave solution in
the form,

ψ(x, t) = ρ(ξ) ei(kx−ωt),

where ξ = α(x − vt). Separating the real and imaginary parts of equation (1), one obtains,

v = 2k, (2)

from the imaginary part, indicating that in the present case, the wave velocity v is controlled
by k. The real part simply yields,

α2ρ ′′ + gρ3 + ερ = κ, (3)

where ε = ω − k2 + µ, and the prime indicates differentiation with respect to ξ . It has been
observed earlier [17] that this equation can be connected to the equation f ′′ + af + bf 3 = 0
through the following fractional linear transformation (FT):

ρ(ξ) = A + Bf (ξ |m)δ

1 + Df (ξ |m)δ
(4)

where A,B and D are real constants, δ is an integer and f (ξ |m) is a Jacobi elliptic function,
with the modulus parameter m. It can be shown that δ = 2 is the maximum allowed value for

which E0 = f ′2

2 + b
4f 4 + a

2 f 2 is conserved.
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We consider the case where f (ξ |m) = cn(ξ |m); other cases can be similarly studied.
Since the goal is to study the localized solutions systematically, we consider the case with
modulus parameter m = 1, which reduces cn(ξ) to sech(ξ). It is worth pointing out that
other solutions involving sn(ξ) and dn(ξ) naturally emerge from the above solution, since the
transform involves square of the cn(ξ) function.

We can see that equation (4) connects ρ(ξ) to the Jacobi elliptic equation, provided
AD �= B, and the following conditions are satisfied for the localized solutions:

Aε + gA3 − κ = 0, (5)

2εAD + εB + 4α2(B − AD) + 3gA2B − 3κD = 0, (6)

AεD2 + 2εBD + 4α2(AD − B)D + 6α2(AD − B) + 3gAB2 − 3κD2 = 0, (7)

εBD2 + 2α2(B − AD)D + gB3 − κD3 = 0. (8)

Equation (5) in A does not involve B and D, which is first solved to get the real A. Thus
A is determined in terms of ε, κ and g. From equation (6), we determine D in terms of B
as D = 
B, where 
 = ε+4α2+3gA2

4α2A+3κ−2εA
. By substituting this into equation (7), B is found as

B = 6α2(1−A
)

3gA+Aε
2+2ε
+4α2
(A
−1)−3κ
2 . From equation (8), we obtain a cubic equation in β ≡ α2:

p1β
3 + q1β

2 + r1β + c1 = 0, (9)

where p1 = 64(A3g + Aε − κ), q1 = (48A5g2 + 64A3gε + 16Aε2 − 48A2gκ − 16εκ), r1 =
(12A7g3 + 36A5g2ε + 20A3gε2 − 4Aε3 − 60A4g2κ − 72A2gεκ + 4ε2κ + 48Agκ2) and
c1 = (3A7g3ε − 3A5g2ε2 − 7A3gε3 − Aε4 − 18A6g3κ − 15A4g2εκ + 12A2gε2κ + ε3κ +
9A3g2κ2 − 15Agεκ2 + 9gκ3). It can be straightforwardly seen that p1 in equation (9) is the
consistency condition (5) and hence is identically zero. Therefore, the width parameter β is
the solution of a quadratic equation. Thus for any given values of g, ε and κ , we can find the
values of A,B,D and α.

So, the localized solutions are of the form

ψ = A + B sech(ξ)2

1 + D sech(ξ)2
ei(kx−ωt) (10)

where the constants obey relations (5)–(8). The expressions for A,B,D and α in terms of
g, κ and ε are lengthy and are not particularly illuminating. Hence, the explicit expressions
are not given here; they are computed from the given values of g, κ and ε. We have checked
that solutions of the type

ψ = A + Bcn(ξ)

1 + Dcn(ξ)
ei(kx−ωt) (11)

are also solutions of the NLSE with source, for appropriate values of A,B,D and α. The
corresponding localized solutions (m = 1) are of the type obtained earlier [11].

3. Analysis of the localized solutions

We now proceed to analyse carefully the localized solutions of equation (3). It is clear that
a localized solution is bound to have at least one extremum in its profile. And since the first
derivative of ρ(ξ) must vanish at the extremum, therefore,

2(B − AD)f (ξ)

(1 + Df (ξ)2)2
f ′(ξ) = 0. (12)
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Figure 1. Contour plot depicting positive and negative values of A for different values of g and κ;
here ε = 0.1. The dark region shows the values of g and κ where A takes positive values, whereas
the white region corresponds to negative values of A.

Since AD �= B, either f or f ′ or both must be zero. But we consider f (ξ) = sech(ξ), whose
first derivative vanishes only at origin. This means we have an extremum at origin. The second
derivative of ρ at origin is,

ρ ′′ = 2(AD − B)

(1 + D)2
, (13)

which resolves the maximum and minimum. It should be noted that ρ ′′ is singular for D = −1.
For the non-singular case, we see that there is a clear distinction of two regimes of solutions:
one for which AD > B, where ρ ′′ is positive; this corresponds to minimum. In the second
case, where AD < B, we have a maximum. The latter corresponds to a bright soliton, whereas
the former corresponds to a dark soliton or background soliton in the propagating media. This
clearly suggests that both types of solitons exist in this dynamical system.

In these rational solutions, parameter A decides the strength of the background, in which
these solutions propagate. It is interesting to note that for the localized solution, A = 0 is not
permitted, since this leads to the absence of the source. Considering ρ to be positive semi-
definite one finds further constraints: (i) A should be positive; (ii) A > |B|; (iii) D should
be greater than −1 for non-singularity. The case of negative ρ can be tackled analogously;
we concentrate on the positive case below. The parameters satisfying the above conditions
are taken to be physically meaningful. The parameter conditions leading to singular solutions
are dealt with separately. Figure 1 shows the allowed parameter values for the localized
solutions considered above. Figure 2 shows the solutions for some mentioned values of the
parameters. These values have been used in the relation (5)–(8) to compute A,B,D and α

which characterize the solution.
Consider the case when the source has no space dependence, that is, when k = 0, which

in the light of equation (2) gives propagation velocity of the envelope as zero. So, in this
case the solitons are stationary and non-propagating ones; however, the profile of the solution
remains unchanged, as k affects the solution implicitly via ε.

For the case when ε = 0 for which ω = k2 − µ; in this case equations (5)–(8) yield

q1(α
4) + r1α

2 + c = 0. (14)

Here, q1 = 48A5g2 − 48A2gκ, r1 = 12A7g3 − 60A4g2κ + 48Agκ2 and c = −18A6g3κ +
9A3g2κ2 + 9gκ3. Very interestingly, all of these coefficients vanish in view of equation (5),
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Figure 2. Density profiles of some solitons of driven NLSE. (i) Dark soliton (dashed), with
g = 0.7, κ = −0.7 and ε = −1.4; (ii) bright soliton (solid), with g = −0.5, κ = 0.1 and
ε = −0.4; (iii) bright soliton (dash-dotted), with g = −0.4, κ = 0.1 and ε = −0.4;A, B, D and
α which characterize the solution have been computed from these values.

leaving α as a free parameter. So, the width of the soliton, in this case, is independent of the
parameter values, which means that the solitons can have arbitrary size for the given values of
g and κ .

As noted earlier, equation (3) allows singular solutions for D = −1. One can show that
they satisfy the relation

g(6α2 − 3ε)A2 + ε(2α2 + ε) + 9gκA − 8α4 = 0. (15)

These solutions possess one singularity in their profile, which physically corresponds to
very large field intensity due to self-focussing [18, 19]. When D < −1, singular solitons exist,
with singularities existing at two different locations, between which ρ becomes negative.

Stability of the wide variety of solutions found here needs to be investigated. Stability
of the constant background and inhomogeneous solutions for NLSE with source has been
investigated earlier [11]. It has been observed that in the presence of damping this dynamical
system possesses a rich structure, involving stable solutions, spatio-temporal chaos and
unstable regimes. In the absence of damping, for weak source strength, stable solutions
had been identified. We have studied the stability of solutions numerically using the Crank–
Nicolson method, which is unconditionally stable, and found a number of solutions to be
stable in agreement with the results of Barashenkov et al [11]. Here we show the stability of
localized, non-propagating solutions. Figure 4 depicts the magnitude of perturbed solutions
with the initial condition ψ(x, t = 0) = ψ(x, t = 0) + ε, where ε is a function which assumes
a random value at each point, where the maximum value of ε is 10% of the peak value of ψ .
One can clearly see from figure 3, which is the time evolution of the magnitude of unperturbed
solution, that perturbation does not destabilize the solution. We have checked addition of
random noise up to 30% of the peak value of ψ ; the localized solutions are found to be quite
stable. The step sizes dx and dt were taken as 0.01 and 0.0001, respectively, in this method.

4. NLSE with a generalized source

Considering a more generalized source, rather than a plane wave source, we have the driven
NLSE as

i
∂ψ

∂t
+

∂2ψ

∂x2
+ g|ψ |2ψ + µψ = κ ei(χ(ξ)−ωt). (16)
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Figure 3. Time evolution of the unperturbed solution.
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Figure 4. Time evolution of the noise perturbed solution, the stability of the solution is clearly
seen.

Here χ(ξ) is some function of x and t. We consider the ansatz,

ψ(x, t) = ρ(ξ, t) ei(χ(ξ)−ωt), (17)

where ξ = α(x − vt). Equation (17) when substituted into equation (16) gives a complex
equation in ρ and χ . Equating the imaginary part to zero, one gets

χ ′ = v

2α
+

c

ρ2
. (18)

One can clearly see that the above equation suggests phase-amplitude coupling for c �= 0. We
see from relation (18) an interesting case of the phase singularity of the soliton arising through
phase-amplitude coupling, when ρ vanishes.

Substituting this relation into the real part of equation (16), we get a nonlinear differential
equation of the form

α2ρ ′′ + gρ3 + ερ = κ +
α2c2

ρ3
, (19)
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where ε = (
ω + µ + v2

4

)
. The above equation can be connected with the equation governing

Jacobi elliptic functions via a fractional transformation as

ρ(ξ) = A + Bf (ξ |m)δ

1 + Df (ξ |m)δ
, (20)

where δ = 2 is again the maximum allowed value. This gives the consistency conditions:

gA6 + εA4 − (2α2(AD − B)(1 − m) + κ)A3 = α2c2 (21)

6A5Bg + 4εA3B + 2εA4D − 3κA2B − 3κA3D + 6α2(B − AD)(1 − m)A2B

+ 6α2(AD − B)(1 − m)A3D + 4α2(2m − 1)A3(B − AD) = 6α2c2D (22)

6α2(B − AD)(1 − m)AB2 + 18α2(AD − B)(1 − m)A2BD

+ 12α2(B − AD)(2m − 1)A2B + 4α2(AD − B)(2m − 1)A3D

+ 6α2(AD − B)mA3 + 15gA4B2 + 6εA2B2 + 8εA3BD + εA4D2

− 3κAB2 − 9κA2BD − 3κA3D2 = 15α2c2D2 (23)

20gA3B3 + 4εAB3 + 12εA2B2D + 4εA3BD2 − κB3 − 9κAB2D − 9κA2BD2 − κA3D3

+ 18α2AB2D(AD − B)(1 − m) − 2α2B3(AD − B)(1 − m)

− 12α2AB2(AD − B)(2m − 1) − 2α2mA3D(AD − B)

+ 12α2A2BD(AD − B)(2m − 1) = 20α2c2D3 (24)

15gA2B4 + εB4 + 8εAB3D + 6εA2B2D2 − 3κB3D − 9κAB2D2 − 3κA2BD3

+ 6α2B3D(AD − B)(1 − m) − 4α2B3(AD − B)(2m − 1)

+ 12α2AB2D(AD − B)(2m − 1) + 18α2mAB2(AD − B)

− 6α2mA2BD(AD − B) = 15α2c2D4 (25)

6gAB5 + 2εB4D + 4εAB3D2 − 3κAB2D3 − 3κB3D2 + 4α2(B − AD)(1 − 2m)B3D

+ 6α2m(B − AD)AB2D + 6α2m(AD − B)B3 = 6α2c2D5 (26)

2α2(B − AD)mB3D + gB6 + εB4D2 − κB3D3 = α2c2D6. (27)

Since there, in total, are seven simultaneous relations to fix three independent parameters,
we can see that these are constrained solutions. One can also see that the phase-amplitude
coupling imposes constraints on the solution space, without changing the profile of the
solutions. From the above relations, one can see that B = 0 needs c = 0 or D = 0.
The former case has already been studied here, whereas the latter case results in a constant
background solution. Here A �= 0 requires c �= 0; hence the solutions always exist in a
constant background. This should be contrasted with the case when c = 0; for which cnoidal
wave solutions are possible with A = 0. Similarly, in m = 1 case localized solutions with
B = 0 are allowed in the previous case, which as seen above are not found in the present
case. Hence, only rational solutions are possible. Moreover, we see that (21) is a sixth-order
polynomial, in contrast to the previous relations, this does not have analytically tractable roots
leaving numerical analysis as the only tool to analyse the structure of solution space apart
from some special cases.
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Figure 5. Periodic solutions with g = 0.875 976, κ = −0.478 279, α = −1.438 06, c̃ =
0.186 253 and ε = −1.132 85.

−10 −5 0 5 10

0

0.5

1

1.5

2

ρ

ξ

Figure 6. Periodic solutions with g = 0.449, κ = 1.7695, α = −0.799, c̃ = 0.1733 and
ε = −1.3435.

Below we illustrate the procedure to solve the consistency conditions with an explicit
case when ε = 0. Writing αc = c̃ one observes that the relations simplify considerably;
equation (21) yields

E = −κ ±
√

κ2 + 4gc̃2

2g
, (28)

where E = A3. It can be clearly seen that A can be both positive and negative; reality of
A needs a further constraint on the parameters. Subsequently, assuming B = 
D, we have
from (22)


 = 6c̃2 + 4α2A2 + 3κA3

6gA5 − 3κA2 − 4α2A2
. (29)

Eliminating α2 from equations (22) and (23), we get

D = 18c̃2 − 18gA2
 + 9κA2
 + 9κA4

30gA4
2 + (36g + 12κ)A
2 − 12κA3 − 42c̃2
(30)

which is free from α2. Using the above relation with equation (27) one finds

α2 = (g
6 − κ
3 − c̃2)(9c̃2 − 9gA2
 + 9
2κA2
 + 9

2κA4)

(A − 
)
3 + 30gA4
2 + (36g + 12κ)A
2 − 12κA2 − 42c̃2
(31)
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which can be substituted into (29) to give 
 in terms of g, κ and c̃2. At this stage, there
are three more relations, which in principle can be used to find the values of g, κ and c̃2 for
which the localized solutions exist. Numerical integration of equation (19) yields a variety of
solutions for different values of c. We show in figures 5 and 6 a few periodic solutions.

In conclusion, a number of interesting features have emerged from the analysis of the exact
solutions of the driven NLSE. Dark and bright solitons can exist in attractive and repulsive
nonlinear regimes, a feature very different for NLSE; the presence of the external source makes
this possible. Static solitons are found for both the equations. In particular, static solitons are
found to have interesting properties like arbitrary scale, under certain parametric restrictions.
They are found to be quite stable and robust to noise perturbation. In certain specific parameter
regimes, solitons of arbitrary size are found. Singular solutions are also found for both the
equations. The investigation of the situation, where the phase is allowed to depend upon
the intensity, revealed that the corresponding solutions are highly constrained. The study of
solitary waves having complex envelope, analogous to Bloch solitons in condensed matter
physics, is worth investigating in the present scenario. Application of the fractional linear
transformation technique employed here to other nonlinear equations is also of deep interest.
Investigations along these lines are currently in progress.
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